
An Introduction to Thumb

 1

Introduction
High-end embedded control applications such as cell-phones, disk drives and
modems are demanding more performance from their controllers while still
requiring low costs.

CISC cores are hitting their performance ceilings. Their large number of
transistors tends to make them power-hungry, big and expensive as well as
difficult to integrate, resulting in a high overall system cost.

RISC cores offer a potential solution to these problems. In the past RISC
processors often lost out to CISC processors because of poor code density,
which required larger memory sizes and a consequent high system cost.

Extended architecture The ARM RISC architecture offers the low power consumption, small die size and
high performance needed in embedded applications. ARM has extended this
architecture in order to address the code size problem by developing Thumb,
a new instruction set.

This overview describes Thumb, a major innovation from Advanced RISC
Machines (ARM), which is the basis of a new series of microcontrollers from Mitel
Semiconductor.

Solutions to the code-size problem
There are several approaches to tackling the code-size problem:

• hand code in assembler

The designer can consider hand-coding assembler for code-size
optimization. However, this can take an impractical amount of time and
may produce code that is difficult to support and only 10-20% more
compact than that from a good compiler. The root of the problem,
inefficient code, is still unresolved.

• improve the compiler

Compiler technology could also be improved, but again the lower limit will
be the code size achievable by hand-coding.

• use compressed code

Another option is to use some form of compressed code that is expanded
at run time. However, fast decompression that does not impact
performance is difficult and requires additional system resources.

The ARM solution to the problem uses a combination of software and hardware.
Elegant and simple, it builds on ARM’s already substantial advantages of:

• Industry-leading MIPS/Watt performance

• Excellent code-density

• Small die size for integration

• Global multi-vendor sourcing

THUMB
Introduction to Thumb

MS4417 - 3.0 March 1998

An Introduction to Thumb

2

The Thumb Concept
Thumb is an extension to the ARM architecture. It contains 36 instruction formats
drawn from the standard 32-bit ARM instruction set that have been re-coded into
16-bit wide op-codes. This brings very high code density, since Thumb instructions
are half the width of ARM instructions. On execution, these new 16-bit Thumb op-
codes are decompressed by the processor to their ARM instruction set
equivalents, which are then run on an ARM core as normal.

 Figure 1: instructions as a recoded subset of the ARM instruction set

Unique advantage Thumb is not just another mixed instruction set concept. Thumb-aware cores have
two separate instruction sets—a unique advantage, since it allows the designer to
keep all the power of ARM’s 32-bit instruction set while benefiting from the code-
size advantages of the Thumb instruction set. The fact that the two instruction sets
are quite separate also means that decoding logic is extremely simple, and this in
turn keeps silicon area small and maintains ARM’s industry-leading low-power and
MIPS/Watt performance.

Size and
performance-critical

routines

Since Thumb-aware cores are able to execute the standard ARM instruction set as
well as the new Thumb instructions, the designer can trade-off code size against
performance, sub-routine by sub-routine, writing size-critical routines in Thumb
code and performance-critical routines in ARM code.

32-bit RISC performance Thumb-aware cores such as the ARM7TDMI still have ARM’s full 32-bit
architecture, so the designer retains 32-bit RISC performance. It is the
combination of the two instruction sets running on a 32-bit Thumb-aware core that
makes this an effective solution to the code-size and performance problems of
16-bit systems.

30% code density
improvement

Results have shown around 30% code density improvement compared to ARM
code, bringing Thumb-aware processors below traditional CISC cores for code
size.

ARM instruction

031 015
ARM instruction set Thumb instruction set

Recoding

ARM instruction

ARM instruction

ARM instruction

ARM instruction

ARM instruction

ARM instruction

Thumb instruction

Thumb instruction

Thumb instruction

Thumb instruction

Thumb instruction

Thumb instruction

Thumb instruction

An Introduction to Thumb

 3

 Figure 2: ARM7TDMI core showing the Thumb instruction decompressor

ARM

Decoder
&

Control
Logic

Data bus

32-bit ALU

Barrel
Shifter

Address
Incrementer

Address Register

Register Bank
(31 x 32-bit registers)

(6 status registers)

Address bus

Multiplier

Write Data Register

32 x 8
B

b
u
s

A
L
U

b
u
s

A

b
u
s

P
C

b
u
s

I
n
c
r
e
m
e
n
t
e
r

b
u
s

Instruction

Pipeline

Thumb
Instruction

Decompressor

Instruction

An Introduction to Thumb

4

Half-word support In addition to creating the new Thumb instructions, ARM has added half-word
support (16-bit data) to both the Thumb and ARM instruction sets. ARM therefore
now fully supports 8, 16 and 32-bit data. Optional sign-extension has also been
added for Thumb and ARM cores to support 8 and 16-bit signed data operations.

Enhanced ARM
software toolkit

The ARM software toolkit has also been enhanced to support the development of
Thumb code. The programmer can use the toolkit to write ARM code, Thumb code
or both, which will sit together in system memory.

 Figure 3: Software development flow for Thumb-aware core

ARM7 Core

Thumb ASM ARM ASMC source

Assembler/compiler

Thumb code ARM code

Thumb
Decompressor

16-bit 32-bit

ARM7TDMI

An Introduction to Thumb

 5

Example system configurations
The following three configurations demonstrate a Thumb-aware core in a system.

Example 1

This system benefits from the narrow external bus and memory that low-cost
embedded applications demand.

 Figure 4: Low-cost 16-bit controller and memory system

The controller integrates customer-specific on-chip peripherals as well as small
amounts of fast 32-bit ROM or RAM which is used to store speed-critical code.
When the Thumb-aware core switches into ARM state for extra performance such
as in the case of an interrupt, ARM code is executed out of this area of fast
memory. External 16-bit ROM is used for code and constants storage while 8-bit
RAM contains scratchpad data.

Example 2

This configuration shows how a Thumb-aware core can be used with slow,
low-cost 32-bit ROM.

 Figure 5: 32-bit* system with low-cost ROM

The ROM stores a mixture of routines of 32-bit ARM code with one instruction per
32-bit word and routines of Thumb code with two instructions per word. Each
external fetch draws either one 32-bit ARM instruction or two 16-bit Thumb
instructions. ARM instructions flow into the core pipeline in the usual way.
However, in Thumb state, one Thumb instruction goes into the pipeline while the
other is stored on a 16-bit latch, which is effectively a one-instruction prefetch
buffer. At the next fetch, this stored instruction is immediately available to the core.

On-chip
peripherals

32-bit
ROM or
RAM

16-bit ROM

8-bit RAM

Controller

ARM7TDMI

On-chip
peripherals

32-bit
ROM or
RAM

Low cost 32-bit ROM

8-bit RAMLatch

Controller

ARM7TDMI

An Introduction to Thumb

6

Simulations have shown that in this configuration with 200nS ROM, the Thumb
solution will outperform a standard ARM core by between 10 and 20% depending
on code and processor clock frequency. This is because the ARM solution incurs
wait-states whilst fetching each instruction from the ROM, whereas the Thumb-
aware solution only has to wait for one instruction in every two.

With high speed ROM that is clocked at the processor frequency, no wait states
are incurred and hence the 32bit ARM mode will always outperform the Thumb-
mode.

Example 3

This solution represents the final Thumb-aware step before moving to a standard
ARM core for its extra performance in 32-bit systems.

 Figure 6: High performance 32-bit system

Using high-speed ROM and an on-chip cache, this system offers the highest
performance of Thumb-aware solutions since 32-bit ARM instructions can be run
straight out of fast memory. Code size and system cost are obviously greater than
the low-cost 16-bit bus and memory systems.

On-chip
peripherals

High speed 32-bit ROM

8-bit RAMCore

Controller

Cache

An Introduction to Thumb

 7

Summary of the Thumb Advantage
Excellent code density

The Thumb instruction set gives excellent code density compared to both 32-bit cores
and the 8 and 16-bit processors commonly used in embedded applications. Memory
size and system costs are thereby reduced.

16-bit instructions
Thumb instructions are only 16-bits long, meaning that the system data bus need only
be 16-bits wide. This reduces both power consumption and PCB area, leading to
lower-cost, lower-power systems.

Smallest core die size
Thumb-aware cores have amongst the smallest core die sizes in the industry
(ARM7TDMI is less than 5 mm2 on 0.6µ). The ASSP and ASIC designer therefore
gets a reduced system die size driven both by a core that is smaller than common
16/32 bit CISCs and by the reduced requirement for on-chip programme ROM.
Combined with simplified—hence cheaper—testing compared to CISCs as well as
low-power commodity plastic packaging, this brings a lower-cost product than today’s
common solutions.

Full 32-bit architecture
Thumb instructions execute on ARM’s full 32-bit RISC architecture. The designer is
therefore able to exploit fast 32-bit maths and a simple unsegmented memory map
that has a 4 GByte address space; room for the most complex of embedded control
applications.

The standard architecture combined with new tools that can compile for ARM code,
Thumb code, or a mixture of both, guarantees forward compatibility with the existing
32-bit ARM family. This provides the 16-bit system designer with a future migration
route to an already-exisiting family of 32-bit cores.

Code size and performance
Thumb-aware cores such as the ARM7TDMI execute both 32-bit ARM and the new
16-bit Thumb instructions. Designers can mix routines of Thumb and ARM code in the
same address space. This allows the programmer to trade-off code size and
performance, routine by routine, as required by the application.

Enhanced ARM software toolkit
The new Thumb instructions are fully supported by an enhanced toolkit which is
“Thumb-aware”. This toolkit include a Microsoft Windows Integrated Development
Environment and seamless interworking between Thumb and ARM states.

Protected investment
Investment in existing ARM software is protected, as Thumb-aware cores execute
ARM code. For use in Thumb state, existing source code only needs recompiling.

Building on the ARM advantage
Thumb-aware cores build on the standard ARM advantages of extremely low power
consumption, industry-leading MIPS/Watt performance, small die size for integration/
low cost and global multi-vendor sourcing.

To summarise, the Thumb architecture gives designers of 16-bit systems access
to the performance of ARM’s 32-bit cores at 16-bit system costs.

An Introduction to Thumb

8

Thumb-aware Cores and Roadmap
High performance,

superior code density
The embedded control market is currently served by 8 and 16-bit offerings from
multiple vendors. However, in higher-end applications, these products often no
longer offer the required performance. What such applications need is 32-bit RISC
processor performance combined with a code density superior to that of 16-bit
CISC processors. Thumb offers both of these features, enabling the ARM
architecture to bridge the gap between today’s 16-bit systems and the 32-bit
systems that will be required tomorrow.

More performance
without extra cost

Mitel Semiconductor therefore believes that Thumb-aware cores will be especially
successful in feature-hungry consumer applications which today are using 8 and
16-bit controllers and which are looking for more performance without extra cost.

 Figure 7: Thumb-aware cores filling the performance gap

Source code
compatibility

Since Thumb-aware cores are simply an extension of the ARM architecture, the
designer can compile for Thumb-code, ARM-code or a mix of both. This source
code compatibility between Thumb-aware cores and ARM cores means that a
seamless future upgrade path to a 32-bit system is already in place, making
Thumb-aware cores a safe investment for the future.

The simplicity of the Thumb extension also means that future ARM cores with even
higher performance, such as the ARM8 and StrongARM families, can also be
available with Thumb-aware options.

Workstation
32-bit RISC

8/16 bit
CISC

System
Cost

Performance

ARM7

ARM8

StrongARM

32-bit
CISC

Thumb

An Introduction to Thumb

 9

 Figure 8: Application areas for Thumb-aware cores

The ARM7TDMI The first core to feature Thumb-compatibility is the ARM7TDMI. This is an ARM7
core with:

• On-chip ICEbreaker debug support

• 32-bit hardware multiplier

• Thumb decompressor

32-bit performance
into 8 and 16-bit

control applications

The ARM7TDMI complements the original 32-bit ARM core range by giving low-
end coverage of the embedded control market, reaching down from the 32-bit
world and bringing 32-bit performance into 8 and 16-bit control applications.

Mitel Semiconductor will use the ARM7TDMI in a range of Thumb-based
microcontrollers and ASSPs. Efficient performance with only a 16-bit external bus
allows smaller, lower cost packages to be used and Mitel Semiconductor pays
particular attention to optimising function-per-pin to exploit this advantage fully.

Computer peripherals Personal communications

Industrial Home

PCMCIA

Encryption

Disc drives

Modems

Smart cards

Fax

Set-top box

Digital cellphones

Analogue cellphones

Answering machines

Video games

Cameras

Music

GPS

Process control

Printers PagersWLAN

Videophone

PDA

Automotive

Instrumentation

An Introduction to Thumb

10

Thumb Implementation

(i) Hardware aspects
The major new addition to the ARM architecture to support the Thumb instruction
set is the Thumb decompressor. ARM7TDMI is the first ARM core to implement
this.

 Figure 9: Pipeline fetch, decode and execution

Single cycle decode
and execution

Both the ARM7 and ARM7T cores achieve single cycle execution using a 3-stage
pipeline with Fetch, Decode and Execution phases. Instruction flow through each
stage of the pipeline is controlled by high and low clock phases. The ARM7TDMI
uses this to its advantage by decompressing the Thumb instruction during an
unused phase of the clock in the Decode stage. There is therefore no additional
timing overhead and single cycle decode and execution is maintained.

 Figure 10: Thumb decoding and decompression

16

16

32-bit data

16

A[1]

Mux

Thumb

Instruction
Decompressor

Mux

Mux

Thumb state

ARM
instruction

decode

Fetch
Stage

Decode stage Execute

Decompress Thumb instruction
to ARM and decode ARMFetch Execute

Fetch ExecuteDecode
ARM7
Pipeline

ARM7T
Pipeline

An Introduction to Thumb

 11

ARM instructions arriving from the Fetch stage of the pipeline pass through the
ARM decoder and activate major and minor op-code bit control signals. Major
op-code bits describe the type of instruction to execute while minor bits specify
instruction detail such as the registers or operand specified.

In Thumb state, multiplexers direct Thumb instructions through the Thumb
decompression logic. This effectively explodes the Thumb instruction into its
equivalent ARM instruction. The execution of that ARM instruction then happens
as normal. This may be more easily understood with an example:

 Figure 11: Translation of Thumb ADD to ARM ADD instruction

Elegant solution In this case, the major op-code of the Thumb instruction is placed in the ARM
instruction and the minor op-code is translated via a look-up table.

The ARM instruction inherits the Always condition code driven from the major
op-code.

The major op-code then selects the operand routing from the Thumb op-code to
the ARM op-code. The register specifiers are expanded with zero extension from
the Thumb op-code (3 bits) to 4 bits since this Thumb instruction only accesses
ARM registers R0-R7. The constant value is also zero extended, specifying an
unrotated 8-bit constant in the ARM op-code.

Example: ADD Rd,#Constant

0 0 1 1 0 Rd 8-bit immediate

Major op-code Minor op-code
denoting ADD
instruction

Destination and Immediate
value

1110 00 1 0100 1 0 Rd 0 Rd 0000 8-bit immediate

Always condition code

Thumb code

ARM code

015

31 0

denoting format 3
move/compare/add/sub
with immediate value

source register

An Introduction to Thumb

12

(ii) Software aspects
36 instruction formats The Thumb instruction set contains the 16-bit equivalents of 36 instruction formats

taken from the standard 32-bit ARM instruction set. Instructions chosen were
those which on average did not benefit from the full width of standard 32-bit ARM
instructions op-codes, or those which customer experience had shown were used
most often and were therefore the most important, or those which the compiler
needed in order to get the best possible code density.

Performance/code-size
trade-off

The selection process involved shortening the fields of all the most common
instructions until they fitted into the 16-bits available. The resulting instruction set
was then iterated, giving more op-code bits to the most common instructions
(for example, subroutine calls which account for 1/16 of the instruction set) and
stealing bits from the less critical instructions until the best performance/code-size
trade-off was achieved. The instruction set was future-proofed by leaving space in
the op-codes for new instructions that currently trap to software handlers; a new
release of the ARM compiler would be the only requirement to support this.

In order to accommodate 16-bit op-codes, some limitations on the richness of the
Thumb instruction set were incurred. Most obvious is the reduced number of
registers available when executing Thumb code. In place of the 15 32-bit General
Purpose Registers (GPR) plus PC of the ARM, the programmer has access to 8
GPRs, the Stack Pointer, Link Register and the PC. In the Thumb instruction set,
the 8 GPRs (R0-R7) are called the Lo register set. The other ARM registers
(R8-R15) are known as the Hi set. The programmer has limited access to the Hi
set in Thumb via moves, compares and ADDs giving him some local fast
temporary storage. Moving between ARM and Thumb code does not affect the
contents of the GPRs.

 Figure 12: Mapping of Thumb state registers onto ARM state registers

THUMB state ARM state

R0-R7

Access via special

Stack Pointer (SP)

Link Register (LR)

Program Counter (PC)

CPSR

SPSR

instructions

R0-R7

R8-R12

Stack Pointer (R13)

Link Register (R14)

Program Counter (R15)

CPSR

SPSR

An Introduction to Thumb

 13

Thumb/ARM state bit Transfer between instruction sets is achieved using the BX instruction which
toggles a Thumb/ARM state bit in the Program Status Register (PSR) of the
Thumb-aware core. This means that routines of Thumb and ARM code can live
together in the same memory space:

Rather than taking up a bit in the op-code to distinguish between formats, use of
a status bit leaves room in the 16-bit op-code for a richer instruction set.

New mnemonics include ASR, LSL, LSR, ROR, LDRH, LDSB, LDSH, PUSH,
POP, and STRH. These are not new instructions, but effectively pointers to full
32-bit ARM instructions, since virtually every Thumb instruction has an equivalent
ARM instruction.

Large memory-size
capability

The demand for memory in embedded applications continues to grow. This
means that for an embedded solution to be durable, it must be able to handle
large memory sizes. In the ARM state with its 4Gbytes of address space, this is
not a problem. Nor is it an issue in Thumb state, since Thumb-aware cores are
still full 32-bit processors with a 32-bit address space. 16-bit op-codes could limit
the maximum displacement to 64KBytes. However the Thumb instruction set
provides both a long branch instruction for up to 4MBytes and full 4GByte
branches in 2 instructions.

ARM routine

Thumb routine

ARM routine

Thumb routine

An Introduction to Thumb

14

12.0.1 Thumb code in action

Simple C routine

Here is a simple C routine that demonstrates the differences between Thumb and
ARM code. This routine returns the absolute value of the C integer passed to it as
a parameter. The C code is:

if (x>=0)
return x;

else
return -x;

The equivalent ARM assembly version is (excluding preamble):

iabs CMP r0,#0 ;Compare r0 to zero
RSBLT r0,r0,#0 ;If r0<0 (less than=LT) then do

;r0= 0-r0
MOV pc,lr ;Move Link Register to PC (Return)

The Thumb assembly version is:

CODE16 ;Directive specifying 16-bit (Thumb)
;instructions

iabs CMP r0,#0 ;Compare r0 to zero
BGE return ;Jump to Return if greater or

;equal to zero
NEG r0,r0 ;If not, negate r0

return MOV pc,lr ;Move Link register to PC (Return)

Comparing code sizes:

Smaller assembled
Thumb code size

In this case, the Thumb code is 33% more dense than the ARM code for exactly
the same function. Notice in the example that more instructions are needed to
perform the task in Thumb code than in the ARM equivalent. However, as Thumb
instructions are only half the length of ARM instructions, the assembled Thumb
code size is still smaller.

Code Instructions Size (Bytes) Normalised

ARM 3 12 1.0

Thumb 4 8 0.67

 Table 1: Code size comparison

An Introduction to Thumb

 15

Hand-coded example

As a hand-coded example, consider a binary to hexadecimal converter:

ARM code:

MOV r1,r0 ;r0 holds value to convert
;Load r1 with value

MOV r2,#8 ;Load r2 with decimal 8
Loop: MOV r1,r1,ROR #28 ;Rotate r1 right by 28 and

;put result in r1
AND r0,r1,#15 ;AND r1 with decimal 15
CMP r0,#10 ;Compare r0 with decimal 10 and
ADDLT r0,r0,#'0' ;if it’s less than 10 then

;ADD ASCII 0 to r0
ADDGE r0,r0,#'A' ;otherwise (greater or equal)

;ADD ASCII A to r0
SWI 0 ;routine to write char to screen
SUBS r2,r2,#1 ;Subtract 1 from r2
BGT Loop ;and loop back to 1 if r2 is

;still greater than zero
MOV pc,lr ;Load PC with Link reg (Return)

Thumb code:

MOV r1,r0 ;Value to convert in r0
;Load r1 with value

MOV r2,#8 ;Put 8 in r2
Loop1 LSR r0,r1,#28 ;Do logical shift right on r1

;by 28 places and place in r0
LSL r1,r1,#4 ;Do logical shift left on r1

;by 4 places
CMP r0,#10 ;Compare r0 with 10 and
BLT Loop2 ;if less than 10, branch to Loop2
ADD r0,#’A’-’0’-10;ADD ASCII A-0-10 (7) to r0

Loop2 ADD r0,#'0' ;ADD ASCII 0 (48) to r0
SWI 0 ;routine to write char to screen
SUB r2,#1 ;subtract 1 from r2
BNE Loop1 ;if unfinished loop1
MOV pc,lr ;else,load PC with Link register

;(Return)

When code sizes are compared:

This time, the Thumb code comes out at 45% more dense than the ARM
equivalent, again for exactly the same algorithm.

Code Instructions Size (Bytes) Normalised

ARM 11 44 1.0

Thumb 12 24 0.55

 Table 2: Code size comparison

An Introduction to Thumb

16

Mnemonic Instruction Example ARM-code equivalent

ADC Add with Carry ADC Rd,Rs ADCS Rd,Rd,Rs

ADD Add ADD Rd,Rs,Rn ADDS Rd,Rs,Rn

AND AND AND Rd,Rs ANDS Rd,Rd,Rs

ASR Arithmetic Shift Right ASR Rd,Rs MOVS Rd,Rd,ASR Rs

B Unconditional branch B label B label

BCC Conditional branch BCC label BCC label

BIC Bit Clear BIC Rd,Rs BICS Rd,Rd,Rs

BL Branch and Link BL label BL label

BX Branch and Exchange BX Hs BX Hs

CMN Compare Negative CMN Rd,Rs CMN Rd,Rs

CMP Compare CMP Rd,#Offset8 CMP Rd,#Offset8

EOR EOR EOR Rd,Rs EORS Rd,Rd,Rs

LDMIA Load multiple LDMIA Rb!,{Rlist} LDMIA Rb!,{Rlist}

LDR Load word LDR Rd,[PC,#lmm] LDR Rd,[PC,#lmm]

LDRB Load byte LDRB Rd,[Rb,Ro] LDRB Rd,[Rb,Ro]

LDRH Load halfword LDRH Rd,[Rb,#lmm] LDRH Rd,[Rb,#lmm]

LSL Logical Shift Left LSL Rd,Rs,#Offset5 MOVS Rd,Rs,LSL#Offset5

LDRSB Load sign-extended byte LDRSB Rd,[Rb,Ro] LDRSB Rd,[Rb,Ro]

LDRSH Load sign-extended halfword LDRSH Rd,[Rb,Ro] LDRSH Rd,[Rb,Ro]

LSR Logical Shift Right LSR Rd,Rs MOVS Rd,Rd,LSR Rs

MOV Move register MOV Rd,#Offset8 MOVS Rd,#Offset8

MUL Multiply MUL Rd,Rs MULS Rd,Rs,Rd

MVN Move NOT register MVN Rd,Rs MVNS Rd,Rs

NEG Negate NEG Rd,Rs RSBS Rd,Rs,#0

ORR OR ORR Rd,Rs ORRS Rd,Rd,Rs

POP Pop registers POP {Rlist} LDMIA R13!,{Rlist}

PUSH Push registers PUSH {Rlist} STMDB R13!,{Rlist}

ROR Rotate Right ROR Rd,Rs MOVS Rd,Rd,ROR Rs

SBC Subtract with Carry SBC Rd,Rs SBCS Rd,Rd,Rs

STMIA Store Multiple STMIA Rb!,{Rlist} STMIA Rb!,{Rlist}

STR Store word STR Rd,[Rb,Ro] STR Rd,[Rb,Ro]

STRB Store byte STRB Rd,[Rb,Ro] STRB Rd,[Rb,Ro]

STRH Store halfword STRH Rd,[Rb,Ro] STRH Rd,[Rb,Ro]

SWI Software Interrupt SWI Value8 SWI Value8

SUB Subtract SUB Rd,Rs,Rn SUBS Rd,Rs,Rn

TST Test bits TST Rd,Rs TST Rd,Rs

 Table 3: The Thumb instruction set

An Introduction to Thumb

 17

(iii) Software development route
Since Thumb-aware cores are able to execute ARM instructions, all of the existing
ARM software base continues to run on Thumb cores, though in order to support
the new Thumb instruction set fully, ARM & Mitel Semiconductor have
significantly enhanced the tools available to the programmer for software
development. These enhancements to the Mitel Semiconductor ARM software
Development toolkit include the seamless interaction between Thumb and ARM
states.

Enhanced Mitel Semi-
conductor ARM
software toolkit

The Mitel Semiconductor ARM toolkit contains the following primary components:

• Full Windows GUI

• Project management features

• C compiler

• assembler

• linker

• librarian

• simulator

• UDB™ debugger

New features For Thumb, a new Thumb C compiler and assembler are included, together with
hooks to make the other tools “Thumb-Aware”.

The Thumb C compiler

The Thumb C compiler (tcc) compiles ANSI C to 16-bit Thumb instructions.
Its optimisations include:

• in-lining

• constant folding

• common subexpression elimination

• expression lifting

• live range splitting for dynamic register allocation

• tail calling

• cross-jump elimination

• table-driven peepholing

• switches for speed or code-size optimisation.

The Thumb Compiler may be used in conjunction with the standard ARM
C Compiler allowing code written for Thumb to call ARM code and vice-versa.

New Software
Floating-point library

Both ARM and Thumb compilers support software floating point through ARM’s
new Software Floating-point library which runs up to twice as fast as the original
(version 1.4) floating point emulation, with improved code density.

An Introduction to Thumb

18

Thumb Assembler

ARM or Thumb code The Thumb Assembler can assemble either ARM or Thumb code. It allows mixing
of ARM and Thumb instructions in source files via two new directives (CODE16
and CODE32) which switch between 16-bit Thumb and 32-bit ARM op-code
translation.

Linker

Mixing ARM and
Thumb routines

The ARM Linker has been enhanced to support both ARM and Thumb object
types. ARM and Thumb routines can be freely mixed in an application, allowing the
designer to trade off code-size against performance. Objects can be linked across
the fragmented memory maps common to many embedded applications.

Debug support

Full C source or
assembler-level

debugging

Debugging support is provided by UDB™, a full windowing debugger on Microsoft
Windows platforms, which has been extended to support Thumb-aware cores.
These tools provide full C source or assembler-level debugging. UDB can either
debug code running on an instruction-accurate simulator (ARMulator) or on target
hardware. The associated monitor program, UMON™, can readily be ported to
target systems, as the target-dependent routines are supplied as source code.

For further information on the Mitel Semiconductor ARM Software Toolkit please
contact your local Mitel Semiconductor Sales office or Distributor.

ARM instruction simulator

Benchmark and
develop code

ARM’s instruction-accurate processor simulator, ARMulator, can be used to
benchmark and develop code prior to the creation of target hardware.
The simulator can be configured to emulate target hardware with fragmented
memory maps of differing speeds. Used in conjunction with ARMs new C profiling
tool, designers can choose optimal memory configurations that incorporate the
three critical factors of speed, space and memory cost.

An Introduction to Thumb

 19

Mitel

(Project manager)

Editor*

tcc armcc

armlib

armasmarmlink

UDM™
Debugger

Performance
statistics

Floating point library

ANSI standard library

Supplied simple
memory model

Software model of
target hardware

ARM60 PIE card

MAP-1 board

Target hardware

Executable

ARMulator
Profiling

information

remote

MAKE

GUI shell

U
M
O
N

Target hardware

Target hardware

* User-selectable.
Several editors can be
linked to the shell

 Figure 13: The Mitel Semiconductor ARM software toolkit

An Introduction to Thumb

20

Thumb Benchmarks
In order to build a complete picture of the performance of the ARM7TDMI
Thumb-aware core against alternative solutions, ARM has put together a set of
benchmarks that test two critical aspects of the Thumb concept:

• code size

• performance

Code-size benchmarking
Through patented code compression techniques, the Thumb concept brings 32-bit
performance to 16-bit systems at 16-bit system cost. The code-size benchmarking
that follows measures how effective this solution is in bringing the designer the
minimum code-size possible for an 8/16 bit system.

The approach taken was to commission Micrologic Solutions to generate results
for Espresso, Xlisp and Eqntott. These are routines taken from the SPECint
benchmarking suite. Numbers were derived for four popular competition
processors by using third-party tool offerings. The data for the ARM7TDMI Thumb-
aware core was generated using ARM's Thumb C compiler, described on page 17.

In order to ensure a fair comparison, ARM also took code size numbers that are
publicly available for competing solutions and added data for the ARM7TDMI
Thumb-aware core. Again with code size in bytes, these numbers are for
Dhrystone 1.1, as this data is freely available.

Processor Eqntott Xlisp Espresso

ARM7TDMI 10608 26388 72596

ARM7 core 16768 40768 109932

Intel 386 17640 28097 125686

Intel 8088 19106 29401 137194

Moto 68020 20542 46746 131854

Sparc2 22256 44648 142752

 Table 4: User code size in bytes for three benchmarks
Source: Micrologic Solutions

An Introduction to Thumb

 21

 Figure 14:

Processor Size (Bytes) Normalised

ARM7TDMI 1032 1.00

H8/500 1097 1.06

CPU32 1254 1.22

68000 1268 1.23

i386 1280 1.24

i960 1280 1.24

SH7032 1384 1.34

H8/300H 1530 1.48

MC68HC11 1558 1.51

29000 2296 2.22

Z80 3201 3.10

 Table 5: Normalised Dhrystone code size for large memory model
Source: Microprocessor Forum 1993 and vendor data

0

0.5

1

1.5

2

2.5

3

3.5

An Introduction to Thumb

22

ARM 32-bit RISC code has always been acknowledged as being exceptionally
dense. In fact, as the results show, the density of native ARM code comes close to
the traditional 16-bit processors, leaving other 32-bit RISC cores far behind. This
is due to novel features in the ARM instruction set such as conditional execution
for every instruction and register write-back options.

Industry-leading
code density

These results show that with 30% better code density than competitors’
controllers, the Thumb concept has built on ARM's already efficient code to bring
industry-leading code density. This means that designers who were previously
considering 8 and 16-bit controllers in order to save system code memory can now
migrate to the power of ARM's 32-bit cores and get a reduction in the size of their
system code. This will either enable them to eliminate a memory IC, or to use the
freed memory space for new software features.

Performance benchmarks
Methods such as performing two16-bit fetches and providing only 16-bit
instructions on a 32-bit core are simple approaches to tackling the code-density
problems associated with 32-bit RISC cores. However, both of these solutions lead
to large losses in performance.

Superior performance The purpose of these benchmarks is to demonstrate that even with Thumb core's
excellent code density, its performance in 16-bit systems is superior to both
standard ARM cores and common solutions from the competition.

Again, results are compared for Dhrystone 1.1, as these numbers are freely
available for competing cores. The data for the ARM7TDMI core was generated
using the Thumb-aware instruction simulator (ARMulator) described on page 18.
This simulator provides a clock cycle count from which Dhrystone values were
calculated.

In order to ensure a fair comparison, the comparison was done in 2 stages:

1 For processors connected to 16-bit wide memory systems.

2 For processors connected to 32-bit wide memories.

ARM cores are excellent solutions for portable embedded applications because of
their extremely low power consumption. Therefore, values for both Dhrystone 1.1
MIPS and MIPS/Watt are shown. Processors marked with a star have an on-chip
cache.

Dhrystone MIPS This benchmark is defined as the Dhrystone performance (Dhrystones/second) of
the processor being evaluated, divided by the performance of a VAX 11/780,
namely 1757 Dhrystones/sec.

An Introduction to Thumb

 23

 Figure 15: Dhrystone 1.1 MIPS and MIPS/Watt at 5 Volts
for processors in 16-bit systems

Processor System Power (W) Dhrys1.1 MIPS MIPS/Watt

ARM7TDMI 33MHz 5V 0.181 21.2 117

Z380 18 MHz 0.04 3.1 78

SH7032(*) 20MHz 5V 0.5 16.4 33

H8/500 10MHz 5V 0.1 1 10

486SLC (*) 33MHz 5V 2.25 18 8

H8/300H 16MHz 5V 0.25 1.9 8

386SLC 25 MHz 5V 2.5 8 3

 Table 6: Processors at 5 volts in 16-bit memory systems
Source: Microprocessor Forum 1993 and vendor data

0

20

40

60

80

100

120
Dst1.1 MIPS

MIPS/Watt

* = cached processor

Dhrys.

An Introduction to Thumb

24

 Figure 16: Drystone 1.1 MIPS and MIPS/Watt at 5 Volts
for processors in 32-bit systems

Processor System Power (W) Dhrys 1.1 MIPS MIPS/Watt

ARM7TDMI 33MHz 5V 0.181 25.8 143

PC403GA 40MHz 5V 1 39 39

V810 25 MHz 5V 0.5 18 36

ARM610 25MHz 5V 0.625 14 22

PC/Chip 14.3MHz 5V 0.216 3 14

68349 25MHz 5V 0.96 9 9

29200 16MHz 5V 1.1 8 7

486DX 33MHz 5V 4.5 27 6

i960SA 16MHz 5V 1.25 5 4

 Table 7: Processors at 5 volts in 32-bit memory systems
Source: Microprocessor Forum 1993 and vendor data

0

20

40

60

80

100

120

140

160

180

200

Dst1.1 MIPS

MIPS/Watt

Dhrys.

An Introduction to Thumb

 25

Performance and power consumption numbers have been simulated for the
ARM7TDMI running Dhrystones 1.1/2.1 at 20 MHz and 3.3V:

It is important to remember that the ARM7TDMI is capable of executing both ARM
and Thumb instructions. Therefore, in a 32-bit wide memory system, it will deliver
as many MIPS as the ARM7 if it runs in ARM state 100% of the time.

Exceptional code density
and performance

The above results demonstrate clearly that the Thumb concept not only delivers
exceptional code density, but excellent performance as well. Notice that even
though Dhrystone 1.1 is completely cacheable in 2KB, ARM7TDMI easily out
performs the competition cached processors on Dhrystone 1.1 MIPS.

Leading Dhrystone MIPS
performance

The extremely low power consumption of the ARM7 and ARM7TDMI family make
them ideal choices for portable applications. For applications where power
consumption is not so important, ARM solutions still provide leading Dhrystone
MIPS performance.

The ARM7TDMI outperforms the ARM7 by 150% in a 16-bit system since it does
not have to do two fetches per instruction; in a 32-bit system, a Thumb-aware core
would retain all the performance of an ARM7 simply by operating in ARM state
100% of the time.

Benchmark Power (W) DS MIPS MIPS/Watt

Dstone 2.1 0.036 11.6 322

 Table 8: ARM 7TDM, at 3.3Volts in a 16-bit wide memory system.

Benchmark Power (W) DS MIPS MIPS/Watt

Dstone 1.1 0.036 15.6 433

Dstone 2.1 0.036 14.0 389

 Table 9: ARM 7TDMI at 3.3Volts in a 32-bit wide memory system

An Introduction to Thumb

26

CUSTOMER SERVICE CENTRES
• FRANCE & BENELUX Les Ulis Cedex Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07
• GERMANY Munich Tel: (089) 3609 06-0 Fax: (089) 3609 06-55
• ITALY Milan Tel: (02) 6607151 Fax: (02)66040993
• JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
• KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933
• NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 7023
• SOUTH EAST ASIA Singapore Tel: 3827708 Fax: 3828872
• SWEDEN Stockholm Tel: (8)702 97 70 Fax: (8)640 47 36
• TAIWAN, ROC Taipei Tel: (2)5461260 Fax: (2)7190260
• UK, EIRE, DENMARK, FINLAND & NORWAY

Swindon Tel: (01793) 726666 Fax: (01793) 518582
These are supported by Agents and Distributors in major countries worldwide.
© Mitel Corporation 1998 Publication No. MA4417 Issue No.3.0 March 1998
TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

HEADQUARTERS OPERATIONS
MITEL SEMICONDUCTOR
Cheney Manor, Swindon,
Wiltshire, United Kingdom. SN2 2QW
Tel: (01793) 518000
Fax: (01793) 518411

MITEL SEMICONDUCTOR
P.O. Box 660017,
1500 Green Hills Road,
Scotts Valley, California 95067-0017,
United States of America.
Tel (408) 438 2900
Fax: (408) 438 5576

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be
regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The

Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not
constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such

information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in
significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or tradenames of their respective owners.

