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Introduction
High-end embedded control applications such as cell-phones, disk drives and 
modems are demanding more performance from their controllers while still 
requiring low costs.

CISC cores are hitting their performance ceilings. Their large number of 
transistors tends to make them power-hungry, big and expensive as well as 
difficult to integrate, resulting in a high overall system cost.

RISC cores offer a potential solution to these problems. In the past RISC 
processors often lost out to CISC processors because of poor code density, 
which required larger memory sizes and a consequent high system cost. 

Extended architecture The ARM RISC architecture offers the low power consumption, small die size and 
high performance needed in embedded applications. ARM has extended this 
architecture in order to address the code size problem by developing Thumb, 
a new instruction set.

This overview describes Thumb, a major innovation from Advanced RISC 
Machines (ARM), which is the basis of a new series of microcontrollers from Mitel 
Semiconductor.

Solutions to the code-size problem
There are several approaches to tackling the code-size problem:

• hand code in assembler

The designer can consider hand-coding assembler for code-size 
optimization. However, this can take an impractical amount of time and 
may produce code that is difficult to support and only 10-20% more 
compact than that from a good compiler. The root of the problem, 
inefficient code, is still unresolved.

• improve the compiler

Compiler technology could also be improved, but again the lower limit will 
be the code size achievable by hand-coding.

• use compressed code

Another option is to use some form of compressed code that is expanded 
at run time. However, fast decompression that does not impact 
performance is difficult and requires additional system resources.

The ARM solution to the problem uses a combination of software and hardware. 
Elegant and simple, it builds on ARM’s already substantial advantages of: 

• Industry-leading MIPS/Watt performance

• Excellent code-density

• Small die size for integration

• Global multi-vendor sourcing
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The Thumb Concept
Thumb is an extension to the ARM architecture. It contains 36 instruction formats 
drawn from the standard 32-bit ARM instruction set that have been re-coded into 
16-bit wide op-codes. This brings very high code density, since Thumb instructions 
are half the width of ARM instructions. On execution, these new 16-bit Thumb op-
codes are decompressed by the processor to their ARM instruction set 
equivalents, which are then run on an ARM core as normal.

 Figure 1: instructions as a recoded subset of the ARM instruction set

Unique advantage Thumb is not just another mixed instruction set concept. Thumb-aware cores have 
two separate instruction sets—a unique advantage, since it allows the designer to 
keep all the power of ARM’s 32-bit instruction set while benefiting from the code-
size advantages of the Thumb instruction set. The fact that the two instruction sets 
are quite separate also means that decoding logic is extremely simple, and this in 
turn keeps silicon area small and maintains ARM’s industry-leading low-power and 
MIPS/Watt performance. 

Size and
performance-critical

routines

Since Thumb-aware cores are able to execute the standard ARM instruction set as 
well as the new Thumb instructions, the designer can trade-off code size against 
performance, sub-routine by sub-routine, writing size-critical routines in Thumb 
code and performance-critical routines in ARM code.

32-bit RISC performance Thumb-aware cores such as the ARM7TDMI still have ARM’s full 32-bit 
architecture, so the designer retains 32-bit RISC performance. It is the 
combination of the two instruction sets running on a 32-bit Thumb-aware core that 
makes this an effective solution to the code-size and performance problems of 
16-bit systems.

30% code density
improvement

Results have shown around 30% code density improvement compared to ARM 
code, bringing Thumb-aware processors below traditional CISC cores for code 
size. 
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 Figure 2: ARM7TDMI core showing the Thumb instruction decompressor
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Half-word support In addition to creating the new Thumb instructions, ARM has added half-word 
support (16-bit data) to both the Thumb and ARM instruction sets. ARM therefore 
now fully supports 8, 16 and 32-bit data. Optional sign-extension has also been 
added for Thumb and ARM cores to support 8 and 16-bit signed data operations.

Enhanced ARM
software toolkit

The ARM software toolkit has also been enhanced to support the development of 
Thumb code. The programmer can use the toolkit to write ARM code, Thumb code 
or both, which will sit together in system memory.

 Figure 3: Software development flow for Thumb-aware core
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Example system configurations
The following three configurations demonstrate a Thumb-aware core in a system.

Example 1

This system benefits from the narrow external bus and memory that low-cost 
embedded applications demand. 

 Figure 4: Low-cost 16-bit controller and memory system

The controller integrates customer-specific on-chip peripherals as well as small 
amounts of fast 32-bit ROM or RAM which is used to store speed-critical code. 
When the Thumb-aware core switches into ARM state for extra performance such 
as in the case of an interrupt, ARM code is executed out of this area of fast 
memory. External 16-bit ROM is used for code and constants storage while 8-bit 
RAM contains scratchpad data.

Example 2

This configuration shows how a Thumb-aware core can be used with slow, 
low-cost 32-bit ROM.

 Figure 5: 32-bit* system with low-cost ROM

The ROM stores a mixture of routines of 32-bit ARM code with one instruction per 
32-bit word and routines of Thumb code with two instructions per word. Each 
external fetch draws either one 32-bit ARM instruction or two 16-bit Thumb 
instructions. ARM instructions flow into the core pipeline in the usual way. 
However, in Thumb state, one Thumb instruction goes into the pipeline while the 
other is stored on a 16-bit latch, which is effectively a one-instruction prefetch 
buffer. At the next fetch, this stored instruction is immediately available to the core. 
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Simulations have shown that in this configuration with 200nS ROM, the Thumb 
solution will outperform a standard ARM core by between 10 and 20% depending 
on code and processor clock frequency. This is because the ARM solution incurs 
wait-states whilst fetching each instruction from the ROM, whereas the Thumb-
aware solution only has to wait for one instruction in every two.

With high speed ROM that is clocked at the processor frequency, no wait states 
are incurred and hence the 32bit ARM mode will always outperform the Thumb-
mode.

Example 3

This solution represents the final Thumb-aware step before moving to a standard 
ARM core for its extra performance in 32-bit systems.

 Figure 6: High performance 32-bit system

Using high-speed ROM and an on-chip cache, this system offers the highest 
performance of Thumb-aware solutions since 32-bit ARM instructions can be run 
straight out of fast memory. Code size and system cost are obviously greater than 
the low-cost 16-bit bus and memory systems. 
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Summary of the Thumb Advantage
Excellent code density

The Thumb instruction set gives excellent code density compared to both 32-bit cores 
and the 8 and 16-bit processors commonly used in embedded applications. Memory 
size and system costs are thereby reduced.

16-bit instructions
Thumb instructions are only 16-bits long, meaning that the system data bus need only 
be 16-bits wide. This reduces both power consumption and PCB area, leading to 
lower-cost, lower-power systems.

Smallest core die size
Thumb-aware cores have amongst the smallest core die sizes in the industry 
(ARM7TDMI is less than 5 mm2 on 0.6µ). The ASSP and ASIC designer therefore 
gets a reduced system die size driven both by a core that is smaller than common 
16/32 bit CISCs and by the reduced requirement for on-chip programme ROM. 
Combined with simplified—hence cheaper—testing compared to CISCs as well as 
low-power commodity plastic packaging, this brings a lower-cost product than today’s 
common solutions.

Full 32-bit architecture
Thumb instructions execute on ARM’s full 32-bit RISC architecture. The designer is 
therefore able to exploit fast 32-bit maths and a simple unsegmented memory map 
that has a 4 GByte address space; room for the most complex of embedded control 
applications.

The standard architecture combined with new tools that can compile for ARM code, 
Thumb code, or a mixture of both, guarantees forward compatibility with the existing 
32-bit ARM family. This provides the 16-bit system designer with a future migration 
route to an already-exisiting family of 32-bit cores.

Code size and performance
Thumb-aware cores such as the ARM7TDMI execute both 32-bit ARM and the new 
16-bit Thumb instructions. Designers can mix routines of Thumb and ARM code in the 
same address space. This allows the programmer to trade-off code size and 
performance, routine by routine, as required by the application.

Enhanced ARM software toolkit
The new Thumb instructions are fully supported by an enhanced toolkit which is 
“Thumb-aware”. This toolkit include a Microsoft Windows Integrated Development 
Environment and seamless interworking between Thumb and ARM states.

Protected investment
Investment in existing ARM software is protected, as Thumb-aware cores execute 
ARM code. For use in Thumb state, existing source code only needs recompiling.

Building on the ARM advantage
Thumb-aware cores build on the standard ARM advantages of extremely low power 
consumption, industry-leading MIPS/Watt performance, small die size for integration/
low cost and global multi-vendor sourcing.

To summarise, the Thumb architecture gives designers of 16-bit systems access 
to the performance of ARM’s 32-bit cores at 16-bit system costs.
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Thumb-aware Cores and Roadmap
High performance,

superior code density
The embedded control market is currently served by 8 and 16-bit offerings from 
multiple vendors. However, in higher-end applications, these products often no 
longer offer the required performance. What such applications need is 32-bit RISC 
processor performance combined with a code density superior to that of 16-bit 
CISC processors. Thumb offers both of these features, enabling the ARM 
architecture to bridge the gap between today’s 16-bit systems and the 32-bit 
systems that will be required tomorrow. 

More performance
without extra cost

Mitel Semiconductor therefore believes that Thumb-aware cores will be especially 
successful in feature-hungry consumer applications which today are using 8 and 
16-bit controllers and which are looking for more performance without extra cost.

 Figure 7: Thumb-aware cores filling the performance gap

Source code
compatibility

Since Thumb-aware cores are simply an extension of the ARM architecture, the 
designer can compile for Thumb-code, ARM-code or a mix of both. This source 
code compatibility between Thumb-aware cores and ARM cores means that a 
seamless future upgrade path to a 32-bit system is already in place, making 
Thumb-aware cores a safe investment for the future. 
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 Figure 8: Application areas for Thumb-aware cores

The ARM7TDMI The first core to feature Thumb-compatibility is the ARM7TDMI. This is an ARM7 
core with:

• On-chip ICEbreaker debug support

• 32-bit hardware multiplier

• Thumb decompressor

32-bit performance
into 8 and 16-bit

control applications

The ARM7TDMI complements the original 32-bit ARM core range by giving low-
end coverage of the embedded control market, reaching down from the 32-bit 
world and bringing 32-bit performance into 8 and 16-bit control applications. 

Mitel Semiconductor will use the ARM7TDMI in a range of Thumb-based 
microcontrollers and ASSPs. Efficient performance with only a 16-bit external bus 
allows smaller, lower cost packages to be used and Mitel Semiconductor pays 
particular attention to optimising function-per-pin to exploit this advantage fully. 

Computer peripherals Personal communications

Industrial Home

PCMCIA

Encryption

Disc drives

Modems

Smart cards

Fax

Set-top box

Digital cellphones

Analogue cellphones

Answering machines

Video games

Cameras

Music

GPS

Process control

Printers PagersWLAN

Videophone

PDA

Automotive

Instrumentation



An Introduction to Thumb

10 

Thumb Implementation

(i) Hardware aspects
The major new addition to the ARM architecture to support the Thumb instruction 
set is the Thumb decompressor. ARM7TDMI is the first ARM core to implement 
this.

 Figure 9: Pipeline fetch, decode and execution

Single cycle decode
and execution

Both the ARM7 and ARM7T cores achieve single cycle execution using a 3-stage 
pipeline with Fetch, Decode and Execution phases. Instruction flow through each 
stage of the pipeline is controlled by high and low clock phases. The ARM7TDMI 
uses this to its advantage by decompressing the Thumb instruction during an 
unused phase of the clock in the Decode stage. There is therefore no additional 
timing overhead and single cycle decode and execution is maintained.

 Figure 10: Thumb decoding and decompression
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ARM instructions arriving from the Fetch stage of the pipeline pass through the 
ARM decoder and activate major and minor op-code bit control signals. Major 
op-code bits describe the type of instruction to execute while minor bits specify 
instruction detail such as the registers or operand specified.

In Thumb state, multiplexers direct Thumb instructions through the Thumb 
decompression logic. This effectively explodes the Thumb instruction into its 
equivalent ARM instruction. The execution of that ARM instruction then happens 
as normal. This may be more easily understood with an example:

 Figure 11: Translation of Thumb ADD to ARM ADD instruction

Elegant solution In this case, the major op-code of the Thumb instruction is placed in the ARM 
instruction and the minor op-code is translated via a look-up table. 

The ARM instruction inherits the Always condition code driven from the major 
op-code.

The major op-code then selects the operand routing from the Thumb op-code to 
the ARM op-code. The register specifiers are expanded with zero extension from 
the Thumb op-code (3 bits) to 4 bits since this Thumb instruction only accesses 
ARM registers R0-R7. The constant value is also zero extended, specifying an 
unrotated 8-bit constant in the ARM op-code.

Example: ADD Rd,#Constant 

0 0 1 1 0 Rd 8-bit immediate

Major op-code Minor op-code
denoting ADD
instruction

Destination and Immediate
value

1110 00 1 0100 1 0 Rd 0 Rd 0000 8-bit immediate

Always condition code

Thumb code

ARM code

015

31 0

denoting format 3 
move/compare/add/sub 
with immediate value

source register
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(ii) Software aspects
36 instruction formats The Thumb instruction set contains the 16-bit equivalents of 36 instruction formats 

taken from the standard 32-bit ARM instruction set. Instructions chosen were 
those which on average did not benefit from the full width of standard 32-bit ARM 
instructions op-codes, or those which customer experience had shown were used 
most often and were therefore the most important, or those which the compiler 
needed in order to get the best possible code density. 

Performance/code-size
trade-off

The selection process involved shortening the fields of all the most common 
instructions until they fitted into the 16-bits available. The resulting instruction set 
was then iterated, giving more op-code bits to the most common instructions 
(for example, subroutine calls which account for 1/16 of the instruction set) and 
stealing bits from the less critical instructions until the best performance/code-size 
trade-off was achieved. The instruction set was future-proofed by leaving space in 
the op-codes for new instructions that currently trap to software handlers; a new 
release of the ARM compiler would be the only requirement to support this.

In order to accommodate 16-bit op-codes, some limitations on the richness of the 
Thumb instruction set were incurred. Most obvious is the reduced number of 
registers available when executing Thumb code. In place of the 15 32-bit General 
Purpose Registers (GPR) plus PC of the ARM, the programmer has access to 8 
GPRs, the Stack Pointer, Link Register and the PC. In the Thumb instruction set, 
the 8 GPRs (R0-R7) are called the Lo register set. The other ARM registers 
(R8-R15) are known as the Hi set. The programmer has limited access to the Hi 
set in Thumb via moves, compares and ADDs giving him some local fast 
temporary storage. Moving between ARM and Thumb code does not affect the 
contents of the GPRs.

 Figure 12: Mapping of Thumb state registers onto ARM state registers
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Thumb/ARM state bit Transfer between instruction sets is achieved using the BX instruction which 
toggles a Thumb/ARM state bit in the Program Status Register (PSR) of the 
Thumb-aware core. This means that routines of Thumb and ARM code can live 
together in the same memory space:

Rather than taking up a bit in the op-code to distinguish between formats, use of 
a status bit leaves room in the 16-bit op-code for a richer instruction set.

New mnemonics include ASR, LSL, LSR, ROR, LDRH, LDSB, LDSH, PUSH, 
POP, and STRH. These are not new instructions, but effectively pointers to full 
32-bit ARM instructions, since virtually every Thumb instruction has an equivalent 
ARM instruction.

Large memory-size
capability

The demand for memory in embedded applications continues to grow. This 
means that for an embedded solution to be durable, it must be able to handle 
large memory sizes. In the ARM state with its 4Gbytes of address space, this is 
not a problem. Nor is it an issue in Thumb state, since Thumb-aware cores are 
still full 32-bit processors with a 32-bit address space. 16-bit op-codes could limit 
the maximum displacement to 64KBytes. However the Thumb instruction set 
provides both a long branch instruction for up to 4MBytes and full 4GByte 
branches in 2 instructions.

ARM routine

Thumb routine

ARM routine

Thumb routine
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12.0.1 Thumb code in action

Simple C routine

Here is a simple C routine that demonstrates the differences between Thumb and 
ARM code. This routine returns the absolute value of the C integer passed to it as 
a parameter. The C code is:

if (x>=0)
return x;

else
return -x;

The equivalent ARM assembly version is (excluding preamble):

iabs CMP r0,#0 ;Compare r0 to zero
RSBLT r0,r0,#0 ;If r0<0 (less than=LT) then do 

;r0= 0-r0
MOV pc,lr ;Move Link Register to PC (Return)

The Thumb assembly version is:

CODE16 ;Directive specifying 16-bit (Thumb)
;instructions

iabs CMP      r0,#0 ;Compare r0 to zero
BGE      return ;Jump to Return if greater or 

;equal to zero
NEG      r0,r0 ;If not, negate r0

return MOV      pc,lr ;Move Link register to PC (Return)

Comparing code sizes:

Smaller assembled
Thumb code size

In this case, the Thumb code is 33% more dense than the ARM code for exactly 
the same function. Notice in the example that more instructions are needed to 
perform the task in Thumb code than in the ARM equivalent. However, as Thumb 
instructions are only half the length of ARM instructions, the assembled Thumb 
code size is still smaller. 

Code Instructions Size (Bytes) Normalised

ARM 3 12 1.0

Thumb 4 8 0.67

 Table  1: Code size comparison
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Hand-coded example

As a hand-coded example, consider a binary to hexadecimal converter: 

ARM code: 

MOV r1,r0 ;r0 holds value to convert 
;Load r1 with value

MOV r2,#8 ;Load r2 with decimal 8
Loop: MOV r1,r1,ROR #28 ;Rotate r1 right by 28 and 

;put result in r1
AND r0,r1,#15 ;AND r1 with decimal 15
CMP r0,#10 ;Compare r0 with decimal 10 and
ADDLT r0,r0,#'0' ;if it’s less than 10 then 

;ADD ASCII 0 to r0
ADDGE r0,r0,#'A' ;otherwise (greater or equal) 

;ADD ASCII A to r0
SWI 0 ;routine to write char to screen
SUBS r2,r2,#1 ;Subtract 1 from r2
BGT Loop ;and loop back to 1 if r2 is 

;still greater than zero
MOV pc,lr ;Load PC with Link reg (Return)

Thumb code:

MOV r1,r0 ;Value to convert in r0 
;Load r1 with value

MOV r2,#8 ;Put 8 in r2
Loop1 LSR r0,r1,#28 ;Do logical shift right on r1 

;by 28 places and place in r0
LSL r1,r1,#4 ;Do logical shift left on r1 

;by 4 places
CMP r0,#10 ;Compare r0 with 10 and
BLT Loop2 ;if less than 10, branch to Loop2
ADD r0,#’A’-’0’-10;ADD ASCII A-0-10 (7) to r0

Loop2 ADD r0,#'0' ;ADD ASCII 0 (48) to r0 
SWI 0 ;routine to write char to screen
SUB r2,#1 ;subtract 1 from r2
BNE Loop1 ;if unfinished loop1
MOV pc,lr ;else,load PC with Link register

;(Return)

When code sizes are compared:

This time, the Thumb code comes out at 45% more dense than the ARM 
equivalent, again for exactly the same algorithm.

Code Instructions Size (Bytes) Normalised

ARM 11 44 1.0

Thumb 12 24 0.55

 Table  2: Code size comparison
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Mnemonic Instruction Example ARM-code equivalent

ADC Add with Carry ADC Rd,Rs ADCS Rd,Rd,Rs

ADD Add ADD Rd,Rs,Rn ADDS Rd,Rs,Rn

AND AND AND Rd,Rs ANDS Rd,Rd,Rs

ASR Arithmetic Shift Right ASR Rd,Rs MOVS Rd,Rd,ASR Rs

B Unconditional branch B label B label

BCC Conditional branch BCC label BCC label

BIC Bit Clear BIC Rd,Rs BICS Rd,Rd,Rs

BL Branch and Link BL label BL label

BX Branch and Exchange BX Hs BX Hs

CMN Compare Negative CMN Rd,Rs CMN Rd,Rs

CMP Compare CMP Rd,#Offset8 CMP Rd,#Offset8

EOR EOR EOR Rd,Rs EORS Rd,Rd,Rs

LDMIA Load multiple LDMIA Rb!,{Rlist} LDMIA Rb!,{Rlist}

LDR Load word LDR Rd,[PC,#lmm] LDR Rd,[PC,#lmm]

LDRB Load byte LDRB Rd,[Rb,Ro] LDRB Rd,[Rb,Ro]

LDRH Load halfword LDRH Rd,[Rb,#lmm] LDRH Rd,[Rb,#lmm]

LSL Logical Shift Left LSL Rd,Rs,#Offset5 MOVS Rd,Rs,LSL#Offset5

LDRSB Load sign-extended byte LDRSB Rd,[Rb,Ro] LDRSB Rd,[Rb,Ro]

LDRSH Load sign-extended halfword LDRSH Rd,[Rb,Ro] LDRSH Rd,[Rb,Ro]

LSR Logical Shift Right LSR Rd,Rs MOVS Rd,Rd,LSR Rs

MOV Move register MOV Rd,#Offset8 MOVS Rd,#Offset8

MUL Multiply MUL Rd,Rs MULS Rd,Rs,Rd

MVN Move NOT register MVN Rd,Rs MVNS Rd,Rs

NEG Negate NEG Rd,Rs RSBS Rd,Rs,#0

ORR OR ORR Rd,Rs ORRS Rd,Rd,Rs

POP Pop registers POP {Rlist} LDMIA R13!,{Rlist}

PUSH Push registers PUSH {Rlist} STMDB R13!,{Rlist}

ROR Rotate Right ROR Rd,Rs MOVS Rd,Rd,ROR Rs

SBC Subtract with Carry SBC Rd,Rs SBCS Rd,Rd,Rs

STMIA Store Multiple STMIA Rb!,{Rlist} STMIA Rb!,{Rlist}

STR Store word STR Rd,[Rb,Ro] STR Rd,[Rb,Ro]

STRB Store byte STRB Rd,[Rb,Ro] STRB Rd,[Rb,Ro]

STRH Store halfword STRH Rd,[Rb,Ro] STRH Rd,[Rb,Ro]

SWI Software Interrupt SWI Value8 SWI Value8

SUB Subtract SUB Rd,Rs,Rn SUBS Rd,Rs,Rn

TST Test bits TST Rd,Rs TST Rd,Rs

 Table  3: The Thumb instruction set
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(iii) Software development route
Since Thumb-aware cores are able to execute ARM instructions, all of the existing 
ARM software base continues to run on Thumb cores, though in order to support 
the new Thumb instruction set fully, ARM & Mitel Semiconductor have 
significantly enhanced the tools available to the programmer for software 
development. These enhancements to the Mitel Semiconductor ARM software 
Development toolkit include the seamless interaction between Thumb and ARM 
states. 

Enhanced Mitel Semi-
conductor ARM
software toolkit

The Mitel Semiconductor ARM toolkit contains the following primary components: 

• Full Windows GUI

• Project management features

• C compiler

• assembler

• linker

• librarian

• simulator 

• UDB™ debugger

New features For Thumb, a new Thumb C compiler and assembler are included, together with 
hooks to make the other tools “Thumb-Aware”. 

The Thumb C compiler

The Thumb C compiler (tcc) compiles ANSI C to 16-bit Thumb instructions. 
Its optimisations include:

• in-lining

• constant folding

• common subexpression elimination

• expression lifting

• live range splitting for dynamic register allocation

• tail calling

• cross-jump elimination

• table-driven peepholing

• switches for speed or code-size optimisation. 

The Thumb Compiler may be used in conjunction with the standard ARM 
C Compiler allowing code written for Thumb to call ARM code and vice-versa. 

New Software
Floating-point library

Both ARM and Thumb compilers support software floating point through ARM’s 
new Software Floating-point library which runs up to twice as fast as the original 
(version 1.4) floating point emulation, with improved code density. 
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Thumb Assembler

ARM or Thumb code The Thumb Assembler can assemble either ARM or Thumb code. It allows mixing 
of ARM and Thumb instructions in source files via two new directives (CODE16 
and CODE32) which switch between 16-bit Thumb and 32-bit ARM op-code 
translation.

Linker

Mixing ARM and
Thumb routines

The ARM Linker has been enhanced to support both ARM and Thumb object 
types. ARM and Thumb routines can be freely mixed in an application, allowing the 
designer to trade off code-size against performance. Objects can be linked across 
the fragmented memory maps common to many embedded applications. 

Debug support

Full C source or
assembler-level

debugging

Debugging support is provided by UDB™, a full windowing debugger on Microsoft 
Windows platforms, which has been extended to support Thumb-aware cores. 
These tools provide full C source or assembler-level debugging. UDB can either 
debug code running on an instruction-accurate simulator (ARMulator) or on target 
hardware. The associated monitor program, UMON™, can readily be ported to 
target systems, as the target-dependent routines are supplied as source code.

For further information on the Mitel Semiconductor ARM Software Toolkit please 
contact your local Mitel Semiconductor Sales office or Distributor.

ARM instruction simulator

Benchmark and
develop code

ARM’s instruction-accurate processor simulator, ARMulator, can be used to 
benchmark and develop code prior to the creation of target hardware. 
The simulator can be configured to emulate target hardware with fragmented 
memory maps of differing speeds. Used in conjunction with ARMs new C profiling 
tool, designers can choose optimal memory configurations that incorporate the 
three critical factors of speed, space and memory cost.
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Thumb Benchmarks
In order to build a complete picture of the performance of the ARM7TDMI 
Thumb-aware core against alternative solutions, ARM has put together a set of 
benchmarks that test two critical aspects of the Thumb concept:

• code size

• performance

Code-size benchmarking
Through patented code compression techniques, the Thumb concept brings 32-bit 
performance to 16-bit systems at 16-bit system cost. The code-size benchmarking 
that follows measures how effective this solution is in bringing the designer the 
minimum code-size possible for an 8/16 bit system.

The approach taken was to commission Micrologic Solutions to generate results 
for Espresso, Xlisp and Eqntott. These are routines taken from the SPECint 
benchmarking suite. Numbers were derived for four popular competition 
processors by using third-party tool offerings. The data for the ARM7TDMI Thumb-
aware core was generated using ARM's Thumb C compiler, described on page 17. 

In order to ensure a fair comparison, ARM also took code size numbers that are 
publicly available for competing solutions and added data for the ARM7TDMI 
Thumb-aware core. Again with code size in bytes, these numbers are for 
Dhrystone 1.1, as this data is freely available.

Processor Eqntott Xlisp Espresso

ARM7TDMI  10608  26388  72596

ARM7 core  16768  40768  109932

Intel 386  17640  28097  125686

Intel 8088  19106  29401  137194

Moto 68020  20542  46746  131854

Sparc2  22256  44648  142752

 Table  4: User code size in bytes for three benchmarks
Source: Micrologic Solutions
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 Figure 14:

Processor Size (Bytes)  Normalised

ARM7TDMI  1032  1.00

H8/500  1097  1.06

CPU32  1254  1.22

68000  1268  1.23

i386  1280  1.24

i960  1280  1.24

SH7032  1384  1.34

H8/300H  1530  1.48

MC68HC11  1558  1.51

29000  2296  2.22

Z80  3201  3.10

 Table  5: Normalised Dhrystone code size for large memory model
Source: Microprocessor Forum 1993 and vendor data
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ARM 32-bit RISC code has always been acknowledged as being exceptionally 
dense. In fact, as the results show, the density of native ARM code comes close to 
the traditional 16-bit processors, leaving other 32-bit RISC cores far behind. This 
is due to novel features in the ARM instruction set such as conditional execution 
for every instruction and register write-back options.

Industry-leading
code density

These results show that with 30% better code density than competitors’ 
controllers, the Thumb concept has built on ARM's already efficient code to bring 
industry-leading code density. This means that designers who were previously 
considering 8 and 16-bit controllers in order to save system code memory can now 
migrate to the power of ARM's 32-bit cores and get a reduction in the size of their 
system code. This will either enable them to eliminate a memory IC, or to use the 
freed memory space for new software features.

Performance benchmarks
Methods such as performing two16-bit fetches and providing only 16-bit 
instructions on a 32-bit core are simple approaches to tackling the code-density 
problems associated with 32-bit RISC cores. However, both of these solutions lead 
to large losses in performance. 

Superior performance The purpose of these benchmarks is to demonstrate that even with Thumb core's 
excellent code density, its performance in 16-bit systems is superior to both 
standard ARM cores and common solutions from the competition.

Again, results are compared for Dhrystone 1.1, as these numbers are freely 
available for competing cores. The data for the ARM7TDMI core was generated 
using the Thumb-aware instruction simulator (ARMulator) described on page 18. 
This simulator provides a clock cycle count from which Dhrystone values were 
calculated.

In order to ensure a fair comparison, the comparison was done in 2 stages:

1 For processors connected to 16-bit wide memory systems.

2 For processors connected to 32-bit wide memories.

ARM cores are excellent solutions for portable embedded applications because of 
their extremely low power consumption. Therefore, values for both Dhrystone 1.1 
MIPS and MIPS/Watt are shown. Processors marked with a star have an on-chip 
cache.

Dhrystone MIPS This benchmark is defined as the Dhrystone performance (Dhrystones/second) of 
the processor being evaluated, divided by the performance of a VAX 11/780, 
namely 1757 Dhrystones/sec.
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 Figure 15: Dhrystone 1.1 MIPS and MIPS/Watt at 5 Volts
for processors in 16-bit systems

Processor System Power (W) Dhrys1.1 MIPS MIPS/Watt

ARM7TDMI  33MHz 5V  0.181  21.2  117

Z380  18 MHz  0.04  3.1  78

SH7032(*)  20MHz 5V  0.5  16.4  33

H8/500  10MHz 5V  0.1  1  10

486SLC (*)  33MHz 5V  2.25  18  8

H8/300H  16MHz 5V  0.25  1.9  8

386SLC  25 MHz 5V  2.5  8  3

 Table  6: Processors at 5 volts in 16-bit memory systems
Source: Microprocessor Forum 1993 and vendor data
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 Figure 16: Drystone 1.1 MIPS and MIPS/Watt at 5 Volts
for processors in 32-bit systems

Processor  System  Power (W)  Dhrys 1.1 MIPS  MIPS/Watt

ARM7TDMI  33MHz 5V  0.181  25.8  143

PC403GA  40MHz 5V  1  39  39

V810  25 MHz 5V  0.5  18  36

ARM610  25MHz 5V  0.625  14  22

PC/Chip  14.3MHz 5V  0.216  3  14

68349  25MHz 5V  0.96  9  9

29200  16MHz 5V  1.1  8  7

486DX  33MHz 5V  4.5  27  6

i960SA  16MHz 5V  1.25  5  4

 Table  7: Processors at 5 volts in 32-bit memory systems
Source: Microprocessor Forum 1993 and vendor data
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Performance and power consumption numbers have been simulated for the 
ARM7TDMI running Dhrystones 1.1/2.1 at 20 MHz and 3.3V:

It is important to remember that the ARM7TDMI is capable of executing both ARM 
and Thumb instructions. Therefore, in a 32-bit wide memory system, it will deliver 
as many MIPS as the ARM7 if it runs in ARM state 100% of the time.

Exceptional code density
and performance

The above results demonstrate clearly that the Thumb concept not only delivers 
exceptional code density, but excellent performance as well. Notice that even 
though Dhrystone 1.1 is completely cacheable in 2KB, ARM7TDMI easily out 
performs the competition cached processors on Dhrystone 1.1 MIPS. 

Leading Dhrystone MIPS
performance

The extremely low power consumption of the ARM7 and ARM7TDMI family make 
them ideal choices for portable applications. For applications where power 
consumption is not so important, ARM solutions still provide leading Dhrystone 
MIPS performance.

The ARM7TDMI outperforms the ARM7 by 150% in a 16-bit system since it does 
not have to do two fetches per instruction; in a 32-bit system, a Thumb-aware core 
would retain all the performance of an ARM7 simply by operating in ARM state 
100% of the time.

Benchmark Power (W) DS MIPS MIPS/Watt

Dstone 2.1 0.036 11.6 322

 Table  8: ARM 7TDM, at 3.3Volts in a 16-bit wide memory system.

Benchmark Power (W) DS MIPS MIPS/Watt

Dstone 1.1 0.036 15.6 433

Dstone 2.1 0.036 14.0 389

 Table  9: ARM 7TDMI at 3.3Volts in a 32-bit wide memory system
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